Optimisation du théorème d’Ax-Sen-Tate et application à un calcul de cohomologie galoisienne -adique
Soit un corps -adique, son groupe de Galois absolu et la valuation sur . Dans sa démonstration du théorème d’Ax-Sen-Tate, Ax montre que si pour un , vérifie pour tout , alors il existe tel que , avec . Ax se pose la question de l’optimalité de la constante , que nous étudions ici. En utilisant l’extension de engendrée par les racines -es d’une uniformisante fixée de , nous déterminons la constante optimale, ainsi que des informations supplémentaires sur les tels que pour...