The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Optimisation du théorème d’Ax-Sen-Tate et application à un calcul de cohomologie galoisienne p -adique

Jérémy Le Borgne — 2010

Annales de l’institut Fourier

Soit K un corps p -adique, G son groupe de Galois absolu et v la valuation sur C p . Dans sa démonstration du théorème d’Ax-Sen-Tate, Ax montre que si pour un A R , x C p vérifie v ( σ x - x ) A pour tout σ G , alors il existe y K tel que v ( x - y ) A - c , avec c = p / ( p - 1 ) 2 . Ax se pose la question de l’optimalité de la constante c , que nous étudions ici. En utilisant l’extension de K engendrée par les racines p m -es d’une uniformisante fixée de K , nous déterminons la constante optimale, ainsi que des informations supplémentaires sur les x C p tels que v ( σ x - x ) A pour...

Page 1

Download Results (CSV)