The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is in general and when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
In this article, we show the convergence of a class of numerical schemes for certain
maximal monotone evolution systems; a by-product of this results
is the existence of solutions in cases which had not been previously
treated. The order of these schemes is in general and
when the only non Lipschitz continuous term is the subdifferential
of the indicatrix of a closed convex set. In the case of Prandtl's
rheological model, our estimates in maximum norm do not depend
on spatial dimension.
Download Results (CSV)