The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the flow of a non-homogeneous viscous incompressible fluid which is known at an initial time. Our purpose is to prove that, when is smooth enough, there exists a local strong regular solution (which is global for small regular data).
It is proved that any Banach valued distribution on a bounded set can be extended to all of if and only if it is a derivative of a uniformly continuous function. A similar result is given for distributions on an unbounded set. An example shows that this does not extend to Frechet valued distributions. This relies on the fact that a Banach valued distribution is locally a derivative of a uniformly continuous function. For sake of completeness, a global representation of a Banach valued distribution...
Download Results (CSV)