Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Extension of distributions and representation by derivatives of continuous functions.

Jérôme LemoineJacques Simon — 1996

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

It is proved that any Banach valued distribution on a bounded set can be extended to all of R d if and only if it is a derivative of a uniformly continuous function. A similar result is given for distributions on an unbounded set. An example shows that this does not extend to Frechet valued distributions. This relies on the fact that a Banach valued distribution is locally a derivative of a uniformly continuous function. For sake of completeness, a global representation of a Banach valued distribution...

Modelling of convective phenomena in forest fire.

We present a model coupling the fire propagation equations in a bidimensional domain representing the surface, and the air movement equations in a three dimensional domain representing an air layer. As the air layer thickness is small compared with its length, an asymptotic analysis gives a three dimensional convective model governed by a bidimensional equation verified by a stream function. We also present the numerical simulations of these equations.

Page 1

Download Results (CSV)