The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties.
Download Results (CSV)