The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Around splitting and reaping

Jörg Brendle — 1998

Commentationes Mathematicae Universitatis Carolinae

We prove several results on some cardinal invariants of the continuum which are closely related to either the splitting number 𝔰 or its dual, the reaping number 𝔯 .

Coloring ordinals by reals

Jörg BrendleSakaé Fuchino — 2007

Fundamenta Mathematicae

We study combinatorial principles we call the Homogeneity Principle HP(κ) and the Injectivity Principle IP(κ,λ) for regular κ > ℵ₁ and λ ≤ κ which are formulated in terms of coloring the ordinals < κ by reals. These principles are strengthenings of C s ( κ ) and F s ( κ ) of I. Juhász, L. Soukup and Z. Szentmiklóssy. Generalizing their results, we show e.g. that IP(ℵ₂,ℵ₁) (hence also IP(ℵ₂,ℵ₂) as well as HP(ℵ₂)) holds in a generic extension of a model of CH by Cohen forcing, and IP(ℵ₂,ℵ₂) (hence also HP(ℵ₂))...

MAD families with strong combinatorial properties

Jörg BrendleGreg Piper — 2007

Fundamenta Mathematicae

In his paper in Fund. Math. 178 (2003), Miller presented two conjectures regarding MAD families. The first is that CH implies the existence of a MAD family that is also a σ-set. The second is that under CH, there is a MAD family concentrated on a countable subset. These are proved in the present paper.

Forcing tightness in products of fans

Jörg BrendleTim La Berge — 1996

Fundamenta Mathematicae

We prove two theorems that characterize tightness in certain products of fans in terms of families of integer-valued functions. We also define several notions of forcing that allow us to manipulate the structure of the set of functions from some cardinal θ to ω, and hence, the tightness of these products. These results give new constructions of first countable <θ-cwH spaces that are not ≤θ-cwH.

Rothberger gaps in fragmented ideals

Jörg BrendleDiego Alejandro Mejía — 2014

Fundamenta Mathematicae

The Rothberger number (ℐ) of a definable ideal ℐ on ω is the least cardinal κ such that there exists a Rothberger gap of type (ω,κ) in the quotient algebra (ω)/ℐ. We investigate (ℐ) for a class of F σ ideals, the fragmented ideals, and prove that for some of these ideals, like the linear growth ideal, the Rothberger number is ℵ₁, while for others, like the polynomial growth ideal, it is above the additivity of measure. We also show that it is consistent that there are infinitely many (even continuum...

Page 1

Download Results (CSV)