Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On computing subfields. A detailed description of the algorithm

Jürgen Klüners — 1998

Journal de théorie des nombres de Bordeaux

Let ( α ) be an algebraic number field given by the minimal polynomial f of α . We want to determine all subfields ( β ) ( α ) of given degree. It is convenient to describe each subfield by a pair ( g , h ) [ t ] × [ t ] such that g is the minimal polynomial of β = h ( α ) . There is a bijection between the block systems of the Galois group of f and the subfields of ( α ) . These block systems are computed using cyclic subgroups of the Galois group which we get from the Dedekind criterion. When a block system is known we compute the corresponding...

Asymptotics of number fields and the Cohen–Lenstra heuristics

Jürgen Klüners — 2006

Journal de Théorie des Nombres de Bordeaux

We study the asymptotics conjecture of Malle for dihedral groups D of order 2 , where is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen–Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.

Page 1

Download Results (CSV)