Let and be representations of a topological group G on Banach spaces X and Y, respectively. We investigate the continuity of the linear operators Φ: X → Y with the property that for each t ∈ G in terms of the invariant vectors in Y and the automatic continuity of the invariant linear functionals on X.
We give a sufficient condition on a C*-algebra to ensure that every weakly compact operator into an arbitrary Banach space can be approximated by norm attaining operators and that every continuous bilinear form can be approximated by norm attaining bilinear forms. Moreover we prove that the class of C*-algebras satisfying this condition includes the group C*-algebras of compact groups.
A linear map T from a Banach algebra A into another B preserves zero products if T(a)T(b) = 0 whenever a,b ∈ A are such that ab = 0. This paper is mainly concerned with the question of whether every continuous linear surjective map T: A → B that preserves zero products is a weighted homomorphism. We show that this is indeed the case for a large class of Banach algebras which includes group algebras. Our method involves continuous bilinear maps ϕ: A × A → X (for some Banach space X) with the property...
Let A be an ultraprime Banach algebra. We prove that each approximately commuting continuous linear (or quadratic) map on A is near an actual commuting continuous linear (resp. quadratic) map on A. Furthermore, we use this analysis to study how close are approximate Lie isomorphisms and approximate Lie derivations to actual Lie isomorphisms and Lie derivations, respectively.
Download Results (CSV)