The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
La complexité d’une suite infinie est définie comme la fonction qui compte le nombre de facteurs de longueur dans cette suite. Nous prouvons ici que la complexité des suites de Rudin-Shapiro généralisées (qui comptent les occurrences de certains facteurs dans les développements binaires d’entiers) est ultimement affine.
Download Results (CSV)