The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Linear fractional transformations of continued fractions with bounded partial quotients

J. C. LagariasJ. O. Shallit — 1997

Journal de théorie des nombres de Bordeaux

Let θ be a real number with continued fraction expansion θ = a 0 , a 1 , a 2 , , and let M = a b c d be a matrix with integer entries and nonzero determinant. If θ has bounded partial quotients, then a θ + b c θ + d = a 0 * , a 1 * , a 2 * , also has bounded partial quotients. More precisely, if a j K for all sufficiently large j , then a j * | det ( M ) | ( K + 2 ) for all sufficiently large j . We also give a weaker bound valid for all a j * with j 1 . The proofs use the homogeneous Diophantine approximation constant L θ = lim sup q q q θ - 1 . We show that 1 det ( M ) L ( θ ) L a θ + b c θ + d det ( M ) L ( θ ) .

Page 1

Download Results (CSV)