On the Existence of Principal Values for the Cauchy Integral on Weighted Lebesgue Spaces for Non-Doubling Measures.
We study sufficient conditions on the weight w, in terms of membership in the classes, for the spline wavelet systems to be unconditional bases of the weighted space . The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
The concepts of Riesz type and cotype of a given Banach space are extended to a non-commutative setting. First, the Banach space is replaced by an operator space. The notion of quantized orthonormal system, which plays the role of an orthonormal system in the classical setting, is then defined. The Fourier type and cotype of an operator space with respect to a non-commutative compact group fit in this context. Also, the quantized analogs of Rademacher and Gaussian systems are treated. All this is...
Page 1