Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Moving averages

S. V. ButlerJ. M. Rosenblatt — 2008

Colloquium Mathematicae

In ergodic theory, certain sequences of averages A k f may not converge almost everywhere for all f ∈ L¹(X), but a sufficiently rapidly growing subsequence A m k f of these averages will be well behaved for all f. The order of growth of this subsequence that is sufficient is often hyperexponential, but not necessarily so. For example, if the averages are A k f ( x ) = 1 / ( 2 k ) j = 4 k + 1 4 k + 2 k f ( T j x ) , then the subsequence A k ² f will not be pointwise good even on L , but the subsequence A 2 k f will be pointwise good on L¹. Understanding when the hyperexponential...

Page 1

Download Results (CSV)