Global minimum point of a convex function.
To calculate the zeros of a map f : Rn → Rn we consider the class of triangulations of Rn so that a certain point belongs to a simplex of fixed diameter and dimension. In this paper two types of this new class of triangulations are constructed and shown to be useful to calculate zeros of piecewise linear approximations of f.
Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method.
Page 1