The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Density questions in the classical theory of moments

Christian BergJ. P. Reus Christensen — 1981

Annales de l'institut Fourier

Let μ be a positive Radon measure on the real line having moments of all orders. We prove that the set P of polynomials is note dense in L p ( R , μ ) for any p > 2 , if μ is indeterminate. If μ is determinate, then P is dense in L p ( R , μ ) for 1 p 2 , but not necessarily for p > 2 . The compact convex set of positive Radon measures with same moments as μ is studied in some details.

Measurable functionals on function spaces

J. P. Reus ChristensenJ. K. Pachl — 1981

Annales de l'institut Fourier

We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.

Page 1

Download Results (CSV)