# Measurable functionals on function spaces

J. P. Reus Christensen; J. K. Pachl

Annales de l'institut Fourier (1981)

- Volume: 31, Issue: 2, page 137-152
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topChristensen, J. P. Reus, and Pachl, J. K.. "Measurable functionals on function spaces." Annales de l'institut Fourier 31.2 (1981): 137-152. <http://eudml.org/doc/74493>.

@article{Christensen1981,

abstract = {We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.},

author = {Christensen, J. P. Reus, Pachl, J. K.},

journal = {Annales de l'institut Fourier},

keywords = {measurable functional; function space; countably additive measure; Radon measure; K-analytic space; invariant functional; weak sequential completeness of spaces of measures},

language = {eng},

number = {2},

pages = {137-152},

publisher = {Association des Annales de l'Institut Fourier},

title = {Measurable functionals on function spaces},

url = {http://eudml.org/doc/74493},

volume = {31},

year = {1981},

}

TY - JOUR

AU - Christensen, J. P. Reus

AU - Pachl, J. K.

TI - Measurable functionals on function spaces

JO - Annales de l'institut Fourier

PY - 1981

PB - Association des Annales de l'Institut Fourier

VL - 31

IS - 2

SP - 137

EP - 152

AB - We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.

LA - eng

KW - measurable functional; function space; countably additive measure; Radon measure; K-analytic space; invariant functional; weak sequential completeness of spaces of measures

UR - http://eudml.org/doc/74493

ER -

## References

top- [1] J. P. R. CHRISTENSEN, Topology and Borel Structure, North-Holland, 1974.
- [2] J. B. COOPER and W. SCHACHERMAYER, Uniform measures and co-Saks spaces, Proc. Internat. Seminar Functional Analysis, Rio de Janeiro 1978. Zbl0462.46014
- [3] E. G. EFFROS, Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. Zbl0321.22011MR50 #8100
- [4] Z. FROLÍK, Four functors into paved spaces, Seminar Uniform Spaces 1973-1974, Math. Inst. Czechoslovak Academy of Sciences, 1975. Zbl0369.54012
- [5] Z. FROLÍK, Mesures uniformes, C.R. Acad. Sc., Paris, 277 (1973), A105-A108. Zbl0285.46040
- [6] Z. FROLÍK, A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J., 20 (95) (1970), 406-467. Zbl0223.54028MR42 #1660
- [7] E. GRANIRER, On amenable semigroups with a finite-dimensional set of invariant means I, Illinois J. Math., 7 (1963), 38-48. Zbl0113.09801
- [8] E. GRANIRER, On left amenable semigroups which admit countable left invariant means, Bull. Amer. Math. Soc., 69 (1963), 101-105. Zbl0202.40702MR26 #5087
- [9] E. GRANIRER, Exposed points of convex sets and weak sequential convergence, Memoirs Amer. Math. Soc., 123 (1972). Zbl0258.46001MR51 #1343
- [10] F. P. GREENLEAF, Invariant Means on Topological Groups, Van Nostrand 1969. Zbl0174.19001MR40 #4776
- [11] J. R. ISBELL, Uniform Spaces, Amer. Math. Soc., 1964. Zbl0124.15601MR30 #561
- [12] M. KLAWE, On the dimension of left invariant means and left thick subsets, Trans. Amer. Math. Soc., 231 (1977), 507-518. Zbl0371.43005MR56 #6280
- [13] I. NAMIOKA, On certain actions of semi-groups on L-spaces, Stud. Math., 29 (1967), 63-77. Zbl0232.22009MR36 #6910
- [14] J. C. OXTOBY, Cartesian products of Baire spaces, Fund. Math., 49 (1961), 157-166. Zbl0113.16402MR25 #4055
- [15] J. K. PACHL, Measures as functionals on uniformly continuous functions, Pacific J. Math., 82 (1979), 515-521. Zbl0419.28006MR80j:28012
- [16] H. PFISTER, Räume von stetigen Funktionen und summenstetige Abbildungen, Ludwig-Maximilians-Universität München, 1978.
- [17] M. TALAGRAND, Espaces de Banach faiblement K-analytiques, C.R. Acad. Sc., Paris, 284 (1977), A 745-748. Zbl0349.46018MR55 #8760
- [18] V. S. VARADARAJAN, Measures on topological spaces (Russian), Mat. Sbornik, 55 (97) (1961), 33-100. - Amer. Math. Soc. Transl., (2) 48 (1965), 161-228. Zbl0152.04202MR26 #6342
- [19] M. ZAHRADNÍK, l1-continuous partitions of unity on normed spaces, Czechoslovak Math. J., 26 (101) (1976), 319-329. Zbl0333.46007MR53 #14429

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.