Measurable functionals on function spaces

J. P. Reus Christensen; J. K. Pachl

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 2, page 137-152
  • ISSN: 0373-0956

Abstract

top
We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.

How to cite

top

Christensen, J. P. Reus, and Pachl, J. K.. "Measurable functionals on function spaces." Annales de l'institut Fourier 31.2 (1981): 137-152. <http://eudml.org/doc/74493>.

@article{Christensen1981,
abstract = {We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.},
author = {Christensen, J. P. Reus, Pachl, J. K.},
journal = {Annales de l'institut Fourier},
keywords = {measurable functional; function space; countably additive measure; Radon measure; K-analytic space; invariant functional; weak sequential completeness of spaces of measures},
language = {eng},
number = {2},
pages = {137-152},
publisher = {Association des Annales de l'Institut Fourier},
title = {Measurable functionals on function spaces},
url = {http://eudml.org/doc/74493},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Christensen, J. P. Reus
AU - Pachl, J. K.
TI - Measurable functionals on function spaces
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 2
SP - 137
EP - 152
AB - We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.
LA - eng
KW - measurable functional; function space; countably additive measure; Radon measure; K-analytic space; invariant functional; weak sequential completeness of spaces of measures
UR - http://eudml.org/doc/74493
ER -

References

top
  1. [1] J. P. R. CHRISTENSEN, Topology and Borel Structure, North-Holland, 1974. 
  2. [2] J. B. COOPER and W. SCHACHERMAYER, Uniform measures and co-Saks spaces, Proc. Internat. Seminar Functional Analysis, Rio de Janeiro 1978. Zbl0462.46014
  3. [3] E. G. EFFROS, Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. Zbl0321.22011MR50 #8100
  4. [4] Z. FROLÍK, Four functors into paved spaces, Seminar Uniform Spaces 1973-1974, Math. Inst. Czechoslovak Academy of Sciences, 1975. Zbl0369.54012
  5. [5] Z. FROLÍK, Mesures uniformes, C.R. Acad. Sc., Paris, 277 (1973), A105-A108. Zbl0285.46040
  6. [6] Z. FROLÍK, A survey of separable descriptive theory of sets and spaces, Czechoslovak Math. J., 20 (95) (1970), 406-467. Zbl0223.54028MR42 #1660
  7. [7] E. GRANIRER, On amenable semigroups with a finite-dimensional set of invariant means I, Illinois J. Math., 7 (1963), 38-48. Zbl0113.09801
  8. [8] E. GRANIRER, On left amenable semigroups which admit countable left invariant means, Bull. Amer. Math. Soc., 69 (1963), 101-105. Zbl0202.40702MR26 #5087
  9. [9] E. GRANIRER, Exposed points of convex sets and weak sequential convergence, Memoirs Amer. Math. Soc., 123 (1972). Zbl0258.46001MR51 #1343
  10. [10] F. P. GREENLEAF, Invariant Means on Topological Groups, Van Nostrand 1969. Zbl0174.19001MR40 #4776
  11. [11] J. R. ISBELL, Uniform Spaces, Amer. Math. Soc., 1964. Zbl0124.15601MR30 #561
  12. [12] M. KLAWE, On the dimension of left invariant means and left thick subsets, Trans. Amer. Math. Soc., 231 (1977), 507-518. Zbl0371.43005MR56 #6280
  13. [13] I. NAMIOKA, On certain actions of semi-groups on L-spaces, Stud. Math., 29 (1967), 63-77. Zbl0232.22009MR36 #6910
  14. [14] J. C. OXTOBY, Cartesian products of Baire spaces, Fund. Math., 49 (1961), 157-166. Zbl0113.16402MR25 #4055
  15. [15] J. K. PACHL, Measures as functionals on uniformly continuous functions, Pacific J. Math., 82 (1979), 515-521. Zbl0419.28006MR80j:28012
  16. [16] H. PFISTER, Räume von stetigen Funktionen und summenstetige Abbildungen, Ludwig-Maximilians-Universität München, 1978. 
  17. [17] M. TALAGRAND, Espaces de Banach faiblement K-analytiques, C.R. Acad. Sc., Paris, 284 (1977), A 745-748. Zbl0349.46018MR55 #8760
  18. [18] V. S. VARADARAJAN, Measures on topological spaces (Russian), Mat. Sbornik, 55 (97) (1961), 33-100. - Amer. Math. Soc. Transl., (2) 48 (1965), 161-228. Zbl0152.04202MR26 #6342
  19. [19] M. ZAHRADNÍK, l1-continuous partitions of unity on normed spaces, Czechoslovak Math. J., 26 (101) (1976), 319-329. Zbl0333.46007MR53 #14429

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.