The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Ko [26] and Bruschi [11] independently showed that, in
some relativized world, PSPACE (in fact, ⊕P) contains a set
that is immune to the polynomial hierarchy (PH). In this paper, we
study and settle the question of relativized separations with
immunity for PH and the counting classes PP, , and ⊕P
in all possible pairwise combinations. Our main result is that there
is an oracle relative to which contains a set that is immune BPP.
In particular, this set is immune to PH and to ⊕P. Strengthening...
Download Results (CSV)