A Lattice of Homomorphs.
Given a cohomology class there is a smooth submanifold Poincaré dual to . A special class of such embeddings is characterized by topological properties which hold for nonsingular algebraic hypersurfaces in . This note summarizes some results on the question: how does the divisibility of restrict the dual submanifolds in this class ? A formula for signatures associated with a -fold ramified cover of branched along is given and a proof is included in case .
Let G be a locally compact group, A(G) its Fourier algebra and L¹(G) the space of Haar integrable functions on G. We study the Segal algebra S¹A(G) = A(G) ∩ L¹(G) in A(G). It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of S¹A(G). We use it to show that the restriction operator , for some non-open closed subgroups H, is a surjective complete quotient map. We also show that if N is a non-compact closed subgroup, then the averaging...
Page 1