The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

On partitions without small parts

J.-L. NicolasA. Sárközy — 2000

Journal de théorie des nombres de Bordeaux

Let r ( n , m ) denote the number of partitions of n into parts, each of which is at least m . By applying the saddle point method to the generating series, an asymptotic estimate is given for r ( n , m ) , which holds for n , and 1 m c 1 n log n c 2 .

Sur une application de la formule de Selberg-Delange

F. Ben SaïdJ.-L. Nicolas — 2003

Colloquium Mathematicae

E. Landau has given an asymptotic estimate for the number of integers up to x whose prime factors all belong to some arithmetic progressions. In this paper, by using the Selberg-Delange formula, we evaluate the number of elements of somewhat more complicated sets. For instance, if ω(m) (resp. Ω(m)) denotes the number of prime factors of m without multiplicity (resp. with multiplicity), we give an asymptotic estimate as x → ∞ of the number of integers m satisfying 2 ω ( m ) m x , all prime factors of m are congruent...

Page 1

Download Results (CSV)