On partitions without small parts
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 1, page 227-254
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNicolas, J.-L., and Sárközy, A.. "On partitions without small parts." Journal de théorie des nombres de Bordeaux 12.1 (2000): 227-254. <http://eudml.org/doc/248515>.
@article{Nicolas2000,
abstract = {Let $r(n, m)$ denote the number of partitions of $n$ into parts, each of which is at least $m$. By applying the saddle point method to the generating series, an asymptotic estimate is given for $r (n, m)$, which holds for $n \rightarrow \infty $, and $1 \le m \le c_1 \dfrac\{n\}\{\left(\log \,n\right)^\{c_2\}\}$.},
author = {Nicolas, J.-L., Sárközy, A.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {saddle point method; generating function; partition function; asymptotic estimate},
language = {eng},
number = {1},
pages = {227-254},
publisher = {Université Bordeaux I},
title = {On partitions without small parts},
url = {http://eudml.org/doc/248515},
volume = {12},
year = {2000},
}
TY - JOUR
AU - Nicolas, J.-L.
AU - Sárközy, A.
TI - On partitions without small parts
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 227
EP - 254
AB - Let $r(n, m)$ denote the number of partitions of $n$ into parts, each of which is at least $m$. By applying the saddle point method to the generating series, an asymptotic estimate is given for $r (n, m)$, which holds for $n \rightarrow \infty $, and $1 \le m \le c_1 \dfrac{n}{\left(\log \,n\right)^{c_2}}$.
LA - eng
KW - saddle point method; generating function; partition function; asymptotic estimate
UR - http://eudml.org/doc/248515
ER -
References
top- [1] J. Dixmier, J.-L. Nicolas, Partitions without small parts. Number theory, Vol. I (Budapest, 1987), 9-33, Colloq. Math. Soc. János Bolyai51, North-Holland, Amsterdam, 1990. Zbl0707.11072MR1058207
- [2] J. Dixmier, J.-L. Nicolas, Partitions sans petits sommants. A tribute to Paul Erdõs, 121-152, Cambridge Univ. Press, Cambridge, 1990. Zbl0719.11067MR1117009
- [3] P. Erdõs, J.-L. Nicolas, M. Szalay, Partitions into parts which are unequal and large. Number theory (Ulm, 1987), 19-30, Lecture Notes in Math., 1380, Springer, New York-Berlin, 1989. Zbl0679.10013MR1009791
- [4] P. Erdõs, M. Szalay, On the statistical theory of partitions. Topics in classical number theory, Vol. I, II (Budapest, 1981), 397-450, Colloq. Math. Soc. János Bolyai34, North-Holland, Amsterdam-New York, 1984. Zbl0548.10010MR781149
- [5] G. Freiman, J. Pitman, Partitions into distinct large parts. J. Australian Math. Soc. Ser.A57 (1994), 386-416. Zbl0824.11064MR1297011
- [6] G. Szekeres, An asymptotic formula in the theory of partitions. Quart. J. Math. Oxford2 (1951), 85-108. Zbl0042.04102MR43129
- [7] G. Szekeres, Some asymptotic formulae in the theory of partitions II. Quart. J. Math. Oxford4 (1953), 96-111. Zbl0050.04101MR57279
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.