Vibrations de classe Cs 2 des tores plats de dimension s et théorie des nombres.
La complexité d’une suite infinie est définie comme la fonction qui compte le nombre de facteurs de longueur dans cette suite. Nous prouvons ici que la complexité des suites de Rudin-Shapiro généralisées (qui comptent les occurrences de certains facteurs dans les développements binaires d’entiers) est ultimement affine.
Page 1