Small sets and a class of general functions.
Let be a positive Radon measure on the real line having moments of all orders. We prove that the set of polynomials is note dense in for any , if is indeterminate. If is determinate, then is dense in for , but not necessarily for . The compact convex set of positive Radon measures with same moments as is studied in some details.
We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.
Page 1