The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a modular elliptic curve over
denote the -th derivative of its Hasse-Weil -series. We estimate the number of twisted elliptic curves such that .
We prove an upper bound for the number of primes p ≤ x in an arithmetic progression 1 (mod Q) that are exceptional in the sense that has no generator in the interval [1,B]. As a consequence we prove that if with a sufficiently large absolute constant c, then there exists a prime q dividing Q such that for some positive integer b ≤ B. Moreover we estimate the number of such q’s under suitable conditions.
Download Results (CSV)