Ce texte est une introduction au calcul moulien, développé par Jean Écalle. On donne une définition précise de la notion de moule ainsi que les principales propriétés de ces objets. On interprète les différentes symétries (alterna(e)l,symetra(e)l) des moules via les séries formelles non commutatives associées dans des bigèbres graduées notées et , correspondant aux deux types de colois étudiées par Ecalle, à savoir et . On illustre en détail l’application de ce formalisme dans le domaine de...
Nous présentons un modèle mathématique permettant de reproduire le spectre expérimental des fréquences dans un composant électronique appelé boucle ouverte. Le spectre semble s’organiser suivant une contrainte de nature diophantienne sur les fréquences. Sa structure peut donc se comprendre via une étude de l’ensemble des fractions continues en fonction de leur longueur et de la taille des quotients partiels.
. - In this paper, we give a self-contained introduction to the mould formalism of J. Écalle. We provide a dictionary between moulds and the classical Lie algebraic formalism using non-commutative formal power series. We review results by J. Écalle and B. Vallet about the Trimmed form of local analytic diffeomorphisms of , for which we provide full proofs and details. This allows us to discuss a mould approach to the classical Poincaré-Dulac normal form for diffeomorphisms.
Download Results (CSV)