The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The Dedekind-Mertens lemma relates the contents of two polynomials and the content of their product. Recently, Epstein and Shapiro extended this lemma to the case of power series. We review the problem with a special emphasis on the case of power series, give an answer to a question posed by Epstein-Shapiro and investigate extensions of some related results. This note is of expository character and discusses the history of the problem, some examples and announces some new results.
Consider a representation of a finite group as automorphisms of a power series ring over a perfect field of positive characteristic. Let be the associated formal mixed-characteristic deformation functor. Assume that the action of is weakly ramified, i.e., the second ramification group is trivial. Example: for a group action on an ordinary curve, the action of a ramification group on the completed local ring of any point is weakly ramified.
We prove...
Download Results (CSV)