On the Banach-Mazur distance between continuous function spaces with scattered boundaries
We study the dependence of the Banach-Mazur distance between two subspaces of vector-valued continuous functions on the scattered structure of their boundaries. In the spirit of a result of Y. Gordon (1970), we show that the constant appearing in the Amir-Cambern theorem may be replaced by for some class of subspaces. We achieve this by showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of the set of weak peak points of one of the spaces differs from the...