Asymptotic completeness in classical -body systems
A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jakić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.
The abstract mathematical structure behind the positive energy quantization of linear classical systems is described. It is separated into three stages: the description of a classical system, the algebraic quantization and the Hilbert space quantization. Four kinds of systems are distinguished: neutral bosonic, neutral bosonic, charged bosonic and charged fermionic. The formalism that is described follows closely the usual constructions employed in quantum physics to introduce noninteracting quantum...
The main aim of our lectures is to give a pedagogical introduction to various mathematical formalisms used to describe open quantum systems: completely positive semigroups, dilations of semigroups, quantum Langevin dynamics and the so-called Pauli-Fierz Hamiltonians. We explain two kinds of the weak coupling limit. Both of them show that Hamiltonian dynamics of a small quantum system interacting with a large resevoir can be approximated by simpler dynamics. The better known reduced weak coupling...
Page 1