Fermi Golden Rule, Feshbach Method and embedded point spectrum

Jan Dereziński[1]

  • [1] Department of Mathematical Methods in Physics, Warsaw University, Hoża 74, 00-682, Warszawa, Poland

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-11

Abstract

top
A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak s ˇ ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.

How to cite

top

Dereziński, Jan. "Fermi Golden Rule, Feshbach Method and embedded point spectrum." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-11. <http://eudml.org/doc/10974>.

@article{Dereziński1998-1999,
abstract = {A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak$\{\check\{\rm s\}\}$ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.},
affiliation = {Department of Mathematical Methods in Physics, Warsaw University, Hoża 74, 00-682, Warszawa, Poland},
author = {Dereziński, Jan},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Fermi Golden Rule, Feshbach Method and embedded point spectrum},
url = {http://eudml.org/doc/10974},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Dereziński, Jan
TI - Fermi Golden Rule, Feshbach Method and embedded point spectrum
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 11
AB - A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak${\check{\rm s}}$ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.
LA - eng
UR - http://eudml.org/doc/10974
ER -

References

top
  1. Aguilar, J., Combes J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. Math. Phys. 22, 269 (1971). Zbl0219.47011MR345551
  2. Arai, A, Hirokawa, M.: On the existence and uniqueness of ground states of the spin-boson Hamiltonian, J. Func. Anal. 151, 455 (1997). Zbl0898.47048MR1491549
  3. Bach, V., Fröhlich, J., Sigal, I.: Quantum electrodynamics of confined non-relativistic particles, Adv. Math. 137 (1998), 299-395 Zbl0923.47040MR1639713
  4. Bach, V., Fröhlich, J., Sigal, I., Soffer, A.: Positive commutators and spectrum of non-relativistic QED, preprint. Zbl0962.81011
  5. Balslev, E., Combes, J.-M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions, Comm. Math. Phys. 22, 280 (1971). Zbl0219.47005MR345552
  6. Boutet de Monvel, A., Georgescu, V.: Boundary values of the resolvent of a self-adjoint operator: Higher order estimates, in: Boutet de Monvel, A., Marchenko, V., eds, Algebraic and Geometric Methods in Mathematical Physics, 9-52, Kluwer Academic Publishers 1996. Zbl0917.47022MR1385675
  7. Bratteli, O., Robinson, D.: Operator algebras and Quantum Statistical Physics 2, 2nd ed. Springer, 1997 Zbl0903.46066MR1441540
  8. Dereziński, J., Jak s ˇ ić, V.: Spectral theory of Pauli-Fierz Hamiltonians I, preprint 1999, MaPhySto 
  9. Dereziński, J., Jak s ˇ ić, V., Pillet, C.-A.: In preparation. 
  10. Heitler, W.: The Quantum Theory of Radiation, Oxford, Oxford University Press (1954). Zbl0055.21603
  11. Gerard, C.: On the existence of ground states for massless Pauli-Fierz Hamiltonians, preprint Zbl1004.81012MR1777307
  12. Hübner, M., Spohn, H.: Spectral properties of the spin-boson Hamiltonian, Ann. Inst. H. Poincare 62, 289 (1995). Zbl0827.47053MR1335060
  13. Jak s ˇ ić, V., Last: The structure of the spectrum of the Anderson type Hamiltonians, preprint 1999 
  14. Jak s ˇ ić, V., Pillet, C.-A.: On a model for quantum friction II: Fermi’s golden rule and dynamics at positive temperature, Commun. Math. Phys. 176, 619 (1996). Zbl0852.47038
  15. Jak s ˇ ić, V., Pillet, C.-A.: On a model for quantum friction III: Ergodic properties of the spin-boson system, Commun. Math. Phys. 178, 627 (1996). Zbl0864.47049MR1395208
  16. Jensen, A., Mourre, E., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincare 41, 207 (1984). Zbl0561.47007MR769156
  17. Gohberg, I., Goldberg, S., Kaashoek, M. A.: Classes of Linear Operators, Vol. 2, Birkhäuser 1993. Zbl0789.47001MR1246332
  18. Kato, T.: Perturbation Theory for Linear Operators, second edition, Springer-Verlag, Berlin (1976). Zbl0148.12601MR407617
  19. Mennicken, R., Motovilov, A. K.: Operator interpretation of resonances arising in spectral problems for 2 × 2 operator matrices, preprint. Zbl0932.47010MR1680916
  20. Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys. 78, 391 (1981). Zbl0489.47010MR603501
  21. Perry, P. Sigal, I. M. Simon, B.: Spectral analysis of N-body Schrödinger operators, Ann. Math. 114, 519 (1981). Zbl0477.35069MR634428
  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators, London, Academic Press (1978). Zbl0401.47001MR493421
  23. Simon, B.: Resonances in N-body quantum systems with dilation analytic potential and foundations of time-dependent perturbation theory, Ann. Math. 97, 247 (1973). Zbl0252.47009MR353896
  24. Skibsted, E.: Spectral analysis of N -body systems coupled to a bosonic system, preprint. Zbl0945.81008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.