Fermi Golden Rule, Feshbach Method and embedded point spectrum
- [1] Department of Mathematical Methods in Physics, Warsaw University, Hoża 74, 00-682, Warszawa, Poland
Séminaire Équations aux dérivées partielles (1998-1999)
- Volume: 1998-1999, page 1-11
Access Full Article
topAbstract
topHow to cite
topDereziński, Jan. "Fermi Golden Rule, Feshbach Method and embedded point spectrum." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-11. <http://eudml.org/doc/10974>.
@article{Dereziński1998-1999,
abstract = {A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak$\{\check\{\rm s\}\}$ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.},
affiliation = {Department of Mathematical Methods in Physics, Warsaw University, Hoża 74, 00-682, Warszawa, Poland},
author = {Dereziński, Jan},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Fermi Golden Rule, Feshbach Method and embedded point spectrum},
url = {http://eudml.org/doc/10974},
volume = {1998-1999},
year = {1998-1999},
}
TY - JOUR
AU - Dereziński, Jan
TI - Fermi Golden Rule, Feshbach Method and embedded point spectrum
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 11
AB - A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak${\check{\rm s}}$ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.
LA - eng
UR - http://eudml.org/doc/10974
ER -
References
top- Aguilar, J., Combes J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. Math. Phys. 22, 269 (1971). Zbl0219.47011MR345551
- Arai, A, Hirokawa, M.: On the existence and uniqueness of ground states of the spin-boson Hamiltonian, J. Func. Anal. 151, 455 (1997). Zbl0898.47048MR1491549
- Bach, V., Fröhlich, J., Sigal, I.: Quantum electrodynamics of confined non-relativistic particles, Adv. Math. 137 (1998), 299-395 Zbl0923.47040MR1639713
- Bach, V., Fröhlich, J., Sigal, I., Soffer, A.: Positive commutators and spectrum of non-relativistic QED, preprint. Zbl0962.81011
- Balslev, E., Combes, J.-M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions, Comm. Math. Phys. 22, 280 (1971). Zbl0219.47005MR345552
- Boutet de Monvel, A., Georgescu, V.: Boundary values of the resolvent of a self-adjoint operator: Higher order estimates, in: Boutet de Monvel, A., Marchenko, V., eds, Algebraic and Geometric Methods in Mathematical Physics, 9-52, Kluwer Academic Publishers 1996. Zbl0917.47022MR1385675
- Bratteli, O., Robinson, D.: Operator algebras and Quantum Statistical Physics 2, 2nd ed. Springer, 1997 Zbl0903.46066MR1441540
- Dereziński, J., Jakić, V.: Spectral theory of Pauli-Fierz Hamiltonians I, preprint 1999, MaPhySto
- Dereziński, J., Jakić, V., Pillet, C.-A.: In preparation.
- Heitler, W.: The Quantum Theory of Radiation, Oxford, Oxford University Press (1954). Zbl0055.21603
- Gerard, C.: On the existence of ground states for massless Pauli-Fierz Hamiltonians, preprint Zbl1004.81012MR1777307
- Hübner, M., Spohn, H.: Spectral properties of the spin-boson Hamiltonian, Ann. Inst. H. Poincare 62, 289 (1995). Zbl0827.47053MR1335060
- Jakić, V., Last: The structure of the spectrum of the Anderson type Hamiltonians, preprint 1999
- Jakić, V., Pillet, C.-A.: On a model for quantum friction II: Fermi’s golden rule and dynamics at positive temperature, Commun. Math. Phys. 176, 619 (1996). Zbl0852.47038
- Jakić, V., Pillet, C.-A.: On a model for quantum friction III: Ergodic properties of the spin-boson system, Commun. Math. Phys. 178, 627 (1996). Zbl0864.47049MR1395208
- Jensen, A., Mourre, E., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincare 41, 207 (1984). Zbl0561.47007MR769156
- Gohberg, I., Goldberg, S., Kaashoek, M. A.: Classes of Linear Operators, Vol. 2, Birkhäuser 1993. Zbl0789.47001MR1246332
- Kato, T.: Perturbation Theory for Linear Operators, second edition, Springer-Verlag, Berlin (1976). Zbl0148.12601MR407617
- Mennicken, R., Motovilov, A. K.: Operator interpretation of resonances arising in spectral problems for operator matrices, preprint. Zbl0932.47010MR1680916
- Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys. 78, 391 (1981). Zbl0489.47010MR603501
- Perry, P. Sigal, I. M. Simon, B.: Spectral analysis of N-body Schrödinger operators, Ann. Math. 114, 519 (1981). Zbl0477.35069MR634428
- Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators, London, Academic Press (1978). Zbl0401.47001MR493421
- Simon, B.: Resonances in N-body quantum systems with dilation analytic potential and foundations of time-dependent perturbation theory, Ann. Math. 97, 247 (1973). Zbl0252.47009MR353896
- Skibsted, E.: Spectral analysis of -body systems coupled to a bosonic system, preprint. Zbl0945.81008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.