The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Supporting sequences of pure states on JB algebras

Jan Hamhalter — 1999

Studia Mathematica

We show that any sequence ( φ n ) of mutually orthogonal pure states on a JB algebra A such that ( φ n ) forms an almost discrete sequence in the relative topology induced by the primitive ideal space of A admits a sequence ( a n ) consisting of positive, norm one, elements of A with pairwise orthogonal supports which is supporting for ( φ n ) in the sense of φ n ( a n ) = 1 for all n. Moreover, if A is separable then ( a n ) can be taken such that ( φ n ) is uniquely determined by the biorthogonality condition φ n ( a n ) = 1 . Consequences of this result improving...

Pure states on Jordan algebras

Jan Hamhalter — 2001

Mathematica Bohemica

We prove that a pure state on a C * -algebras or a JB algebra is a unique extension of some pure state on a singly generated subalgebra if and only if its left kernel has a countable approximative unit. In particular, any pure state on a separable JB algebra is uniquely determined by some singly generated subalgebra. By contrast, only normal pure states on JBW algebras are determined by singly generated subalgebras, which provides a new characterization of normal pure states. As an application we contribute...

The order topology for a von Neumann algebra

Emmanuel ChetcutiJan HamhalterHans Weber — 2015

Studia Mathematica

The order topology τ o ( P ) (resp. the sequential order topology τ o s ( P ) ) on a poset P is the topology that has as its closed sets those that contain the order limits of all their order convergent nets (resp. sequences). For a von Neumann algebra M we consider the following three posets: the self-adjoint part M s a , the self-adjoint part of the unit ball M ¹ s a , and the projection lattice P(M). We study the order topology (and the corresponding sequential variant) on these posets, compare the order topology to the other...

Page 1

Download Results (CSV)