We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results.
This contribution presents the shape optimization problem of the plunger cooling cavity for the time dependent model of pressing the glass products. The system of the mould, the glass piece, the plunger and the plunger cavity is considered in four consecutive time intervals during which the plunger moves between 6 glass moulds. The state problem is represented by the steady-state Navier-Stokes equations in the cavity and the doubly periodic energy equation in the whole system, under the assumption...
We study the Stokes problems in a bounded planar domain with a friction type boundary condition that switches between a slip and no-slip stage. Our main goal is to determine under which conditions concerning the smoothness of solutions to the Stokes system with the slip boundary conditions depend continuously on variations of . Having this result at our disposal, we easily prove the existence of a solution to optimal shape design problems for a large class of cost functionals. In order to release...
We study a 2D model of the orientation distribution of fibres in a paper machine headbox. The goal is to control the orientation of fibres at the outlet by shape variations. The mathematical formulation leads to an optimization problem with control in coefficients of a linear convection-diffusion equation as the state problem. Existence of solutions both to the state and the optimization problem is analyzed and sensitivity analysis is performed. Further, discretization is done and a numerical example...
Download Results (CSV)