On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities
Martin Lanzendörfer; Jan Stebel
Applications of Mathematics (2011)
- Volume: 56, Issue: 3, page 265-285
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLanzendörfer, Martin, and Stebel, Jan. "On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities." Applications of Mathematics 56.3 (2011): 265-285. <http://eudml.org/doc/116524>.
@article{Lanzendörfer2011,
abstract = {We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results.},
author = {Lanzendörfer, Martin, Stebel, Jan},
journal = {Applications of Mathematics},
keywords = {existence; weak solutions; incompressible fluids; non-Newtonian fluids; pressure dependent viscosity; shear dependent viscosity; inflow/outflow boundary conditions; pressure boundary conditions; filtration boundary conditions; weak solution; incompressible fluid; non-Newtonian fluid; pressure dependent viscosity; shear dependent viscosity; inflow/outflow boundary conditions; pressure boundary condition; filtration boundary condition},
language = {eng},
number = {3},
pages = {265-285},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities},
url = {http://eudml.org/doc/116524},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Lanzendörfer, Martin
AU - Stebel, Jan
TI - On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 265
EP - 285
AB - We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results.
LA - eng
KW - existence; weak solutions; incompressible fluids; non-Newtonian fluids; pressure dependent viscosity; shear dependent viscosity; inflow/outflow boundary conditions; pressure boundary conditions; filtration boundary conditions; weak solution; incompressible fluid; non-Newtonian fluid; pressure dependent viscosity; shear dependent viscosity; inflow/outflow boundary conditions; pressure boundary condition; filtration boundary condition
UR - http://eudml.org/doc/116524
ER -
References
top- Amrouche, C., Girault, V., Decomposition of vector spaces and application of the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44 (1994), 109-140. (1994) MR1257940
- Bear, J., Dynamics of Fluids in Porous Media, Elsevier New York (1972). (1972) Zbl1191.76001
- Bogovskiĭ, M. E., Solution of some problems of vector analysis associated with the operators div and grad, Tr. Semin. S. L. Soboleva 1 (1980), 5-40 Russian. (1980) MR0631691
- Boyer, F., Fabrie, P., Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations, Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 219-250 (electronic). (2007) MR2276406
- Bruneau, C.-H., 10.1051/m2an:2000142, M2AN, Math. Model. Numer. Anal. 34 (2000), 303-314. (2000) Zbl0954.76014MR1765661DOI10.1051/m2an:2000142
- Bruneau, C.-H., Fabrie, P., 10.1002/fld.1650190805, Int. J. Numer. Methods Fluids 19 (1994), 693-705. (1994) Zbl0816.76024DOI10.1002/fld.1650190805
- Bruneau, C.-H., Fabrie, P., 10.1051/m2an/1996300708151, RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 815-840. (1996) Zbl0865.76016MR1423081DOI10.1051/m2an/1996300708151
- Bulíček, M., Fišerová, V., 10.4171/ZAA/1389, Z. Anal. Anwend. 28 (2009), 349-371. (2009) Zbl1198.35174MR2506365DOI10.4171/ZAA/1389
- Bulíček, M., Málek, J., Rajagopal, K. R., 10.1137/07069540X, SIAM J. Math. Anal. 41 (2009), 665-707. (2009) Zbl1195.35239MR2515781DOI10.1137/07069540X
- Bulíček, M., Málek, J., Rajagopal, K. R., 10.1512/iumj.2007.56.2997, Indiana Univ. Math. J. 56 (2007), 51-85. (2007) Zbl1129.35055MR2305930DOI10.1512/iumj.2007.56.2997
- Bulíček, M., Málek, J., Rajagopal, K. R., 10.1007/s10587-009-0034-2, Czechoslovak Math. J. 59 (2009), 503-528. (2009) Zbl1224.35311MR2532387DOI10.1007/s10587-009-0034-2
- Conca, C., Murat, F., Pironneau, O., 10.4099/math1924.20.279, Japan J. Math., New Ser. 20 (1994), 279-318. (1994) Zbl0826.35093MR1308419DOI10.4099/math1924.20.279
- Feistauer, M., Neustupa, T., 10.1002/mma.755, Math. Methods Appl. Sci. 29 (2006), 1907-1941. (2006) Zbl1124.35054MR2259990DOI10.1002/mma.755
- Filo, J., Zaušková, A., 2D Navier-Stokes equations in a time dependent domain with Neumann type boundary conditions, J. Math. Fluid Mech. 10 (2008), 1-46. (2008) MR2602913
- Forchheimer, P., Wasserbewegung durch Boden, Z. Ver. Deutsch. Ing. 45 (1901), 1781-1788 German. (1901)
- Franta, M., Málek, J., Rajagopal, K. R., 10.1098/rspa.2004.1360, Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 461 (2005), 651-670. (2005) Zbl1145.76311MR2121929DOI10.1098/rspa.2004.1360
- Hämäläinen, J., Mäkinen, R. A., Tarvainen, P., 10.1002/1097-0363(20001230)34:8<685::AID-FLD75>3.0.CO;2-O, Int. J. Numer. Methods Fluids 34 (2000), 685-700. (2000) DOI10.1002/1097-0363(20001230)34:8<685::AID-FLD75>3.0.CO;2-O
- Haslinger, J., Málek, J., Stebel, J., Shape optimization in problems governed by generalised Navier-Stokes equations: existence analysis, Control Cybern. 34 (2005), 283-303. (2005) Zbl1167.49328MR2211072
- Hassanizadeh, S. M., Gray, W. G., 10.1007/BF00192152, Transp. in Porous Media 2 (1987), 521-531. (1987) DOI10.1007/BF00192152
- Heywood, J. G., Rannacher, R., Turek, S., 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y, Int. J. Numer. Methods Fluids 22 (1996), 325-352. (1996) Zbl0863.76016MR1380844DOI10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
- Hron, J., Málek, J., Nečas, J., Rajagopal, K. R., 10.1016/S0378-4754(02)00085-X, Math. Comput. Simul. 61 (2003), 297-315. (2003) Zbl1205.76159MR1984133DOI10.1016/S0378-4754(02)00085-X
- Hron, J., Málek, J., Rajagopal, K. R., 10.1098/rspa.2000.0723, Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 457 (2001), 1603-1622. (2001) Zbl1052.76017DOI10.1098/rspa.2000.0723
- Kračmar, S., Neustupa, J., 10.1016/S0362-546X(01)00534-X, Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169-4180. (2001) Zbl1042.35605MR1972357DOI10.1016/S0362-546X(01)00534-X
- Kučera, P., Solutions of the stationary Navier-Stokes equations with mixed boundary conditions in bounded domain, In: Analysis, Numerics and Applications of Differential and Integral Equations M. Bach et al. Pitman Res. Notes Math. Ser. 379 (1998), 127-131. (1998) MR1606691
- Kučera, P., Skalák, Z., 10.1023/A:1006185601807, Acta Appl. Math. 54 (1998), 275-288. (1998) MR1671783DOI10.1023/A:1006185601807
- Lanzendörfer, M., On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate, Nonlinear Anal., Real World Appl. 10 (2009), 1943-1954. (2009) Zbl1163.76335MR2508405
- Málek, J., Nečas, J., Rajagopal, K. R., 10.1007/s00205-002-0219-4, Arch. Ration. Mech. Anal. 165 (2002), 243-269. (2002) Zbl1022.76011MR1941479DOI10.1007/s00205-002-0219-4
- Málek, J., Nečas, J., Rokyta, M., Růžička, M., Weak and Measure-Valued Solutions to Evolutionary PDEs. Appl. Math. Math. Comput., Vol. 13, Chapman & Hall London (1996). (1996) MR1409366
- Málek, J., Rajagopal, K. R., Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, In: Evolutionary equations, Vol. II. Handbook Differential Equtions Elsevier/North Holland Amsterdam (2005), 371-459. (2005) Zbl1095.35027MR2182831
- Málek, J., Rajagopal, K. R., Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities, In: Handbook Math. Fluid Dyn., Vol. IV Elsevier Amsterdam (2006). (2006) MR3929620
- Mikeli'c, A., Homogenization theory and applications to filtration through porous media, Filtration in Porous Media and Industrial Application. Lect. Notes Math. Vol. 1734 A. Fasano Springer Berlin (2000). (2000) MR1816145
- Novotný, A., Straškraba, I., Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press Oxford (2004). (2004) MR2084891
- Quarteroni, A., Fluid structure interaction for blood flow problems, Lecture Notes on Simulation of Fluid and Structure Interaction. AMS-AMIF Summer School, Prague European Mathematical Society Prague (2001). (2001)
- Shopov, P. J., Iordanov, Y. I., 10.1006/jcph.1994.1078, J. Comput. Phys. 112 (1994), 12-23. (1994) Zbl0798.76042DOI10.1006/jcph.1994.1078
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.