Special issue dedicated to Professor Ivo Babuška, the founder of the journal Applications of Mathematics
A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite...
In this paper, we present a numerical approach to evolution of decohesion in laminated composites based on incremental variational problems. An energy-based framework is adopted, in which we characterize the system by the stored energy and dissipation functionals quantifying reversible and irreversible processes, respectively. The time-discrete evolution then follows from a solution of incremental minimization problems, which are converted to a fully discrete form by employing the conforming finite...
Page 1