The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Asymptotic properties of solutions of higher order difference equations

Janusz Migda — 2010

Mathematica Bohemica

Asymptotic properties of solutions of the difference equation of the form Δ m x n = a n ϕ ( x τ 1 ( n ) , , x τ k ( n ) ) + b n are studied. Conditions under which every (every bounded) solution of the equation Δ m y n = b n is asymptotically equivalent to some solution of the above equation are obtained.

Non-commutative Gelfand-Naimark theorem

Janusz Migda — 1993

Commentationes Mathematicae Universitatis Carolinae

We show that if Y is the Hausdorffization of the primitive spectrum of a C * -algebra A then A is * -isomorphic to the C * -algebra of sections vanishing at infinity of the canonical C * -bundle over Y .

Asymptotic behavior of solutions of nonlinear difference equations

Janusz Migda — 2004

Mathematica Bohemica

The nonlinear difference equation x n + 1 - x n = a n ϕ n ( x σ ( n ) ) + b n , ( E ) where ( a n ) , ( b n ) are real sequences, ϕ n , ( σ ( n ) ) is a sequence of integers and lim n σ ( n ) = , is investigated. Sufficient conditions for the existence of solutions of this equation asymptotically equivalent to the solutions of the equation y n + 1 - y n = b n are given. Sufficient conditions under which for every real constant there exists a solution of equation () convergent to this constant are also obtained.

Asymptotic properties of solutions of nonautonomous difference equations

Janusz Migda — 2010

Archivum Mathematicum

Asymptotic properties of solutions of difference equation of the form Δ m x n = a n ϕ n ( x σ ( n ) ) + b n are studied. Conditions under which every (every bounded) solution of the equation Δ m y n = b n is asymptotically equivalent to some solution of the above equation are obtained. Moreover, the conditions under which every polynomial sequence of degree less than m is asymptotically equivalent to some solution of the equation and every solution is asymptotically polynomial are obtained. The consequences of the existence of asymptotically...

Page 1

Download Results (CSV)