The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Padovan and Perrin numbers as products of two generalized Lucas numbers

Kouèssi Norbert AdédjiJaphet OdjoumaniAlain Togbé — 2023

Archivum Mathematicum

Let P m and E m be the m -th Padovan and Perrin numbers respectively. Let r , s be non-zero integers with r 1 and s { - 1 , 1 } , let { U n } n 0 be the generalized Lucas sequence given by U n + 2 = r U n + 1 + s U n , with U 0 = 0 and U 1 = 1 . In this paper, we give effective bounds for the solutions of the following Diophantine equations P m = U n U k and E m = U n U k , where m , n and k are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.

Page 1

Download Results (CSV)