The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Bessaga's conjecture in unstable Köthe spaces and products

Zefer NurluJasser Sarsour — 1993

Studia Mathematica

Let F be a complemented subspace of a nuclear Fréchet space E. If E and F both have (absolute) bases ( e n ) resp. ( f n ) , then Bessaga conjectured (see [2] and for a more general form, also [8]) that there exists an isomorphism of F into E mapping f n to t n e π ( k n ) where ( t n ) is a scalar sequence, π is a permutation of ℕ and ( k n ) is a subsequence of ℕ. We prove that the conjecture holds if E is unstable, i.e. for some base of decreasing zero-neighborhoods ( U n ) consisting of absolutely convex sets one has ∃s ∀p ∃q ∀r l i m n ( d n + 1 ( U q , U p ) ) / ( d n ( U r , U s ) ) = 0 where...

Page 1

Download Results (CSV)