Représentation d'une algèbre de Jordan, polynômes invariants et harmoniques de Stiefel.
On étudie diverses convergences des sommes de Riesz des fonctions de puissance pième sommable sur un groupe de Lie compact. On montre que , où est la dimension du groupe, est un indice critique pour la classe . On donne également un théorème de multiplicateurs qui redonne le résultat classique de Marcinkiewicz pour le tore. On établit enfin un lien entre les multiplicateurs des groupes de Lie compacts et certains multiplicateurs de .
Let be a Hermitian symmetric space of tube type, its Silov boundary and the neutral component of the group of bi-holomorphic diffeomorphisms of . Our main interest is in studying the action of on . Sections 1 and 2 are part of a joint work with B. Ørsted (see [4]). In Section 1, as a pedagogical introduction, we study the case where is the unit disc and is the circle. This is a fairly elementary and explicit case, where one can easily get a flavour of the more general results. In Section...
To each complex number is associated a representation of the conformal group on (spherical principal series). For three values , we construct a trilinear form on , which is invariant by . The trilinear form, first defined for in an open set of is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.
Page 1