On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus
We find the minimum dilatation of pseudo-Anosov homeomorphisms that stabilize an orientable foliation on surfaces of genus three, four, or five, and provide a lower bound for genus six to eight. Our technique also simplifies Cho and Ham’s proof of the least dilatation of pseudo-Anosov homeomorphisms on a genus two surface. For genus to , the minimum dilatation is the smallest Salem number for polynomials of degree .