The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An overpartition pair is a combinatorial object associated with the -Gauss identity and the summation. In this paper, we prove identities for certain restricted overpartition pairs using Andrews’ theory of recurrences for well-poised basic hypergeometric series and the theory of Bailey chains.
We prove formulas for the generating functions for -rank differences for partitions without repeated odd parts. These formulas are in terms of modular forms and generalized Lambert series.
Download Results (CSV)