Let G1 and G2 be simple graphs and let n1 = |V (G1)|, m1 = |E(G1)|, n2 = |V (G2)| and m2 = |E(G2)|. In this paper we derive sharp upper and lower bounds for the number of spanning trees τ in the Cartesian product G1 □G2 of G1 and G2. We show that: [...] and [...] . We also characterize the graphs for which equality holds. As a by-product we derive a formula for the number of spanning trees in Kn1 □Kn2 which turns out to be [...] .
Let
be the set of all integers such that there exists a connected graph on vertices with precisely spanning trees. It was shown by Sedláček that grows faster than the linear function. In this paper, we show that grows faster than by making use of some asymptotic results for prime partitions. The result settles a question posed in J. Sedláček, On the number of spanning trees of finite graphs, Čas. Pěst. Mat., 94 (1969), 217–221.
Let be the least number for which there exists a simple graph with vertices having precisely spanning trees. Similarly, define as the least number for which there exists a simple graph with edges having precisely spanning trees. As an -cycle has exactly spanning trees, it follows that . In this paper, we show that and if and only if , which is a subset of Euler’s idoneal numbers. Moreover, if and we show that and This improves some previously estabilished bounds.
Download Results (CSV)