We consider the spaces called , constructed on the set of all finite sequences of natural numbers using ultrafilters to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that is homogeneous if and only if all the ultrafilters have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to (i.e., for all ). It follows that for a Ramsey ultrafilter , is a topological group....
We construct a space having the properties in the title, and with the same technique, a countably compact topological group which is not absolutely countably compact.
Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain of infinite subsets of ω, there exists , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain , hence a ψ-space with Stone-Čech remainder...
Download Results (CSV)