On ∆-stable Schwartz spaces.
What follows is the opening conference of the late night seminar at the III Conference on Banach Spaces held at Jarandilla de la Vera, Cáceres. Maybe the reader should not take everything what follows too seriously: after all, it was designed for a friendly seminar, late in the night, talking about things around a table shared by whisky, preprints and almonds. Maybe the reader should not completely discard it. Be as it may, it seems to me by now that everything arrives in the nick of time. ...
In this note we review some results about: 1. Representation of Absolutely (∞,p) summing operators (∏∞,p) in C(K,E) 2. Dunford-Pettis properties.
A sequence (x) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*x) ∈ l. We shall say that a sequence (x) is weakly-p-convergent if for some x ∈ X, (x - x) is weakly-p-summable.
Starting with a continuous injection I: X → Y between Banach spaces, we are interested in the Fréchet (non Banach) space obtained as the reduced projective limit of the real interpolation spaces. We study relationships among the pertenence of I to an operator ideal and the pertenence of the given interpolation space to the Grothendieck class generated by that ideal.
Page 1 Next