The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Some finite generalizations of Euler's pentagonal number theorem

Ji-Cai Liu — 2017

Czechoslovak Mathematical Journal

Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.

Truncations of Gauss' square exponent theorem

Ji-Cai LiuShan-Shan Zhao — 2022

Czechoslovak Mathematical Journal

We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer n , k = 0 n ( - 1 ) k 2 n - k k ( q ; q 2 ) n - k q k + 1 2 = k = - n n ( - 1 ) k q k 2 , where n m = k = 1 m 1 - q n - k + 1 1 - q k and ( a ; q ) n = k = 0 n - 1 ( 1 - a q k ) .

Page 1

Download Results (CSV)