Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The group of commutativity preserving maps on strictly upper triangular matrices

Deng Yin WangMin ZhuJianling Rou — 2014

Czechoslovak Mathematical Journal

Let 𝒩 = N n ( R ) be the algebra of all n × n strictly upper triangular matrices over a unital commutative ring R . A map ϕ on 𝒩 is called preserving commutativity in both directions if x y = y x ϕ ( x ) ϕ ( y ) = ϕ ( y ) ϕ ( x ) . In this paper, we prove that each invertible linear map on 𝒩 preserving commutativity in both directions is exactly a quasi-automorphism of 𝒩 , and a quasi-automorphism of 𝒩 can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings.

Page 1

Download Results (CSV)