The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums

Huaning LiuJing Gao — 2012

Czechoslovak Mathematical Journal

Let q , h , a , b be integers with q > 0 . The classical and the homogeneous Dedekind sums are defined by s ( h , q ) = j = 1 q j q h j q , s ( a , b , q ) = j = 1 q a j q b j q , respectively, where ( ( x ) ) = x - [ x ] - 1 2 , if x is not an integer ; 0 , if x is an integer . The Knopp identities for the classical and the homogeneous Dedekind sum were the following: d n r = 1 d s n d a + r q , d q = σ ( n ) s ( a , q ) , d n r 1 = 1 d r 2 = 1 d s n d a + r 1 q , n d b + r 2 q , d q = n σ ( n ) s ( a , b , q ) , where σ ( n ) = d n d . In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.

Page 1

Download Results (CSV)