The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a sufficient condition under which the solutions of the energy-critical nonlinear wave equation and Schrödinger equation with inverse-square potential blow up. The method is a modified variational approach, in the spirit of the work by Ibrahim et al. [Anal. PDE 4 (2011), 405-460].
We study the Cauchy problem in ℝ³ for the modified Davey-Stewartson system
, .
Under certain conditions on λ₁ and λ₂, we provide a complete picture of the local and global well-posedness, scattering and blow-up of the solutions in the energy space. Methods used in the paper are based upon the perturbation theory from [Tao et al., Comm. Partial Differential Equations 32 (2007), 1281-1343] and the convexity method from [Glassey, J. Math. Phys. 18 (1977), 1794-1797].
We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A space is a quasicontinuous space if and only if is locally hypercompact if and only if is a hypercontinuous lattice; (2) a space is an -continuous space if and only if is a meet continuous and quasicontinuous space; (3) if a -space is a well-filtered poset under its specialization order, then is a quasicontinuous space...
Download Results (CSV)