The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The spectral synthesis theorem for Sobolev spaces of Hedberg and Wolff [7] has been applied in combination with duality, to problems of L approximation by analytic and harmonic functions. In fact, such applications were one of the main motivations to consider spectral synthesis problems in the Sobolev space setting. In this paper we go the opposite way in the context of the BMO-H duality: we prove a BMO approximation theorem by harmonic functions and then we apply the ideas in its proof to produce...
We consider the problem of qualitative approximation by solutions of a constant coefficients homogeneous elliptic equation in the Lipschitz and BMO norms. Our method of proof is well-known: we find a sufficient condition for the approximation reducing matters to a weak spectral synthesis problem in an appropriate Lizorkin-Triebel space. A couple of examples, evolving from one due to Hedberg, show that our conditions are sharp.
Download Results (CSV)