A characterization of bi-invariant Schwartz space multipliers on nilpotent Lie groups
The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.
Let K be a closed Lie subgroup of the unitary group U(n) acting by automorphisms on the (2n+1)-dimensional Heisenberg group . We say that is a Gelfand pair when the set of integrable K-invariant functions on is an abelian convolution algebra. In this case, the Gelfand space (or spectrum) for can be identified with the set of bounded K-spherical functions on . In this paper, we study the natural topology on given by uniform convergence on compact subsets in . We show that is a complete...
Page 1