A nilpotent Lie algebra and eigenvalue estimates

Jacek Dziubański; Andrzej Hulanicki; Joe Jenkins

Colloquium Mathematicae (1995)

  • Volume: 68, Issue: 1, page 7-16
  • ISSN: 0010-1354

Abstract

top
The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on n with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.

How to cite

top

Dziubański, Jacek, Hulanicki, Andrzej, and Jenkins, Joe. "A nilpotent Lie algebra and eigenvalue estimates." Colloquium Mathematicae 68.1 (1995): 7-16. <http://eudml.org/doc/210297>.

@article{Dziubański1995,
abstract = {The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on $ℝ^n$ with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.},
author = {Dziubański, Jacek, Hulanicki, Andrzej, Jenkins, Joe},
journal = {Colloquium Mathematicae},
keywords = {Lie algebra; polynomials; unitary representation; Hilbert space; multiplication operator; unitary character; dilations; bounded measure; right convolution; gauge; Kirillov orbit; Riemann-Lebesgue lemma},
language = {eng},
number = {1},
pages = {7-16},
title = {A nilpotent Lie algebra and eigenvalue estimates},
url = {http://eudml.org/doc/210297},
volume = {68},
year = {1995},
}

TY - JOUR
AU - Dziubański, Jacek
AU - Hulanicki, Andrzej
AU - Jenkins, Joe
TI - A nilpotent Lie algebra and eigenvalue estimates
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 1
SP - 7
EP - 16
AB - The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on $ℝ^n$ with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.
LA - eng
KW - Lie algebra; polynomials; unitary representation; Hilbert space; multiplication operator; unitary character; dilations; bounded measure; right convolution; gauge; Kirillov orbit; Riemann-Lebesgue lemma
UR - http://eudml.org/doc/210297
ER -

References

top
  1. [Br] I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Normale Sup. (4) 6 (1973), 407-411. Zbl0284.57026
  2. [Fe] C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. 
  3. [Fell] J. M. G. Fell, The dual spaces of C*-algebras, Trans. Amer. Math. Soc. 94 (1960), 365-403. Zbl0090.32803
  4. [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, N .J., 1982. Zbl0508.42025
  5. [Gł] P. Głowacki, The Rockland condition for non-differential convolution operators, Duke Math. J. 58 (1989), 371-395. Zbl0678.43002
  6. [HN] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 4 (1978), 899-958. Zbl0423.35040
  7. [HJ] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and eigenfunction expansions of Schrödinger operators II, Studia Math. 87 (1987), 239-252. Zbl0654.43004
  8. [HJL] A. Hulanicki, J. W. Jenkins and J. Ludwig, Minimum eigenvalues for positive Rockland operators, Proc. Amer. Math. Soc. 94 (1985), 718-720. Zbl0546.43008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.