The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Zeros of random functions in Bergman spaces

Joel H. Shapiro — 1979

Annales de l'institut Fourier

Suppose μ is a finite positive rotation invariant Borel measure on the open unit disc Δ , and that the unit circle lies in the closed support of μ . For 0 < p < the A μ p is the collection of functions in L p ( μ ) holomorphic on Δ . We show that whenever a Gaussian power series f ( z ) = Σ ζ n a n z n almost surely lies in A μ p but not in q > p A μ p , then almost surely: a) the zero set Z ( f ) of f is not contained in any A μ q zero set ( q > p , and b) Z ( f + 1 ) Z ( f - 1 ) is not contained in any A μ q zero set.

Page 1

Download Results (CSV)