Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Harmonic interpolating sequences, L p and BMO

John B. Garnett — 1978

Annales de l'institut Fourier

Let ( z ν ) be a sequence in the upper half plane. If 1 < p and if y ν 1 / p f ( z ν ) = a ν , ν = 1 , 2 , ... ( * ) has solution f ( z ) in the class of Poisson integrals of L p functions for any sequence ( a ν ) p , then we show that ( z ν ) is an interpolating sequence for H . If f ( z ν ) = a ν , ν = 1 , 2 , ... has solution in the class of Poisson integrals of BMO functions whenever ( a ν ) , then ( z ν ) is again an interpolating sequence for H . A somewhat more general theorem is also proved and a counterexample for the case p 1 is described.

Page 1

Download Results (CSV)