A space is said to be if there is a basis for with such that every open cover of has a star-finite open refinement by members of . Strongly paracompact spaces which are strongly base-paracompact are studied. Strongly base-paracompact spaces are shown have a family of functions with cardinality equal to the weight such that every open cover has a locally finite partition of unity subordinated to it from .
A topological space is said to be -separable if has a -closed-discrete dense subset. Recently, G. Gruenhage and D. Lutzer showed that -separable PIGO spaces are perfect and asked if -separable monotonically normal spaces are perfect in general. The main purpose of this article is to provide examples of -separable monotonically normal spaces which are not perfect. Extremely normal -separable spaces are shown to be stratifiable.
Download Results (CSV)